
Accessible Aerial Autonomy

Nick Berezny, Lilian de Greef, Bradley Jensen, Kimberly Sheely, Malen Sok, David Lingenbrink, and Zachary Dodds
Computer Science Department; CS REU in Systems

Harvey Mudd College
Claremont, CA, USA

Contact: dodds@cs.hmc.edu

Abstract — This work presents a combination of software and
hardware that makes aerial autonomy substantially more
accessible both in terms of programmatic complexity and in
terms of cost. We use the ARDrone quadrotor helicopter and
Willow Garage's Robot Operating System software infrastructure
to demonstrate several autonomous tasks. Using vision as the
sole aerial sensor, we demonstrate point-to-point navigation,
aerial support of a ground robots, and robot localization within
image-based maps. In contrasting several variations of SURF-
feature matching, we demonstrate that low-cost aerial platforms
can support robust, landmark-free visual spatial reasoning. This
evaluation shows that aerial platforms can be practical, cost- and
time-effective components of task-performing systems. We argue
that aerial autonomy should be considered a broadly accessible
resource, within reach of any investigator or educator of AI
robotics.

Keywords: aerial autonomy, quadcopter visual control, image-based
localization

I. INTRODUCTION
Aerial platforms have a long history within the field of

robotics. Some of today's most impressive remote systems are
aerial vehicles acting under shared-autonomy with human
operators [1,2]. Fully autonomous aerial vehicles demonstrate
remarkably acrobatic maneuvers [3,4] and cooperative task-
completion [5].

Yet to date, aerial autonomy has been a specialized subfield
that required resources only a few institutions could sustain.
Traditional fixed-wing aircraft need large staging areas for
take-off, flight, and landing. They also require long-distance
radio links to maintain communications with offboard
computational resources – or, at the least, the opportunity for
emergency human intervention. Even helicopters, though
usable indoors in closer quarters, are often confined to
specially-designed indoor spaces in which external motion-
capture systems accurately estimate the pose of the vehicles. In
short, autonomous aerial robots have not yet earned the
description practical.

Recent software and hardware advances suggest that this
exclusivity may be changing. Low-cost platforms that exploit
the toy industry’s economies of scale and freely available
software scaffolding significantly lower the barriers to entry in
investigating autonomous aerial robotics. As this paper shows,
however, these very affordable and practical resources also
change the kinds of tasks possible aerial In particular, the
inevitable compromises in control make AI-type tasks the most

promising foundation for aerial investigations. In short, we find
that aerial robots are now as accessible as more traditional
ground robots both as a platform for education, research and
cooperative task-accomplishment.

A. Related work and this work’s contributions
Long-distance vision-based aerial autonomy has a deep

history [6], but far less work has been done in small-scale
settings. Here, we follow the work of Bills et al [7], in which
perspective cues from large line segments guide a quadrotor
copter through an uncontrived indoor environment. We agree
that computer vision is the most natural – and accessible –
sensing modality for aerial platforms. Complementing the use
of line segments, we investigate the effectiveness of local
visual features including color blobs, contrived landmark
patterns, and SURF-described textures for task support.

The tasks we investigate comprise (1) autonomous aerial
sensing support for ground-vehicle navigation, (2) point-to-
point navigation using artificial landmarks, and (3) landmark-
free localization within a map of panoramas. By undertaking
these tasks, we contribute

• a field evaluation of the hardware (the ARDrone) and
software infrastructure (ROS) used, particularly for other
researchers and educators considering aerial platforms

• software drivers that support the drone through ROS

• algorithms for vision-based localization and control of the
quadcopter using only on-board sensing

We conclude with perspective on the benefits and drawbacks of
aerial platforms as a basis for educational and research
robotics. We hope that this work makes aerial robotics a more
practical – and productive – area of investigation even under
significant resource and time constraints.

II. HARDWARE AND SOFTWARE OVERVIEW

A. Hardware: the ARDrone Parrot
Beside an iRobot Create for scale, the $300 ARDrone

Parrot quadrotor helicopter (the “drone”) appears in Figure 1
(top). A remote-control toy, the drone operates by sending and
receiving ASCII strings via 802.11b. The drone provides its
own wireless hub to which any external wifi device can
connect as a client. A user can fly the drone capably within ten
minutes out of the box using one of the the freely available
Android or iOS clients.

We thank the NSF, the Rose Hills Foundation, and Harvey Mudd College.

978-1-4673-0856-4/12/$31.00 ©2012 IEEE 53

As a robot, the drone has significant advantages and
disadvantages. In the latter category are (1) a limited battery
life of about 15 minutes of flight, though its camera lasts for
well over an hour on a single battery charge – a useful feature
for debugging image-processing routines! (2) ARDrone
publishes full specifications of the ASCII protocol it uses, but it
provides no details of the quadcopter’s internal firmware
control nor its electrical/mechanical system. Short of fully
reverse-engineering the device, the drone is most usefully
considered a black box that accepts velocity commands and
broadcasts a video stream and internal data such as battery
charge. Thus, standard interaction with the drone is entirely
off-board. (3) Partly because of the available API calls and
even more because of the inherent difficulties of stable
hovering, the most striking disadvantage of the drone is that it
is not a precisely positionable device. Even in simple real-
world envinronments such as indoor hallways, foyers, and
laboratories, the downdraft from the rotors pushes the drone in
unpredictable ways; neither the sensing nor the control
bandwidth suffices to counteract this. In short, we quickly
realized that the remarkable perching examples from [4,5]
would not be the kinds of tasks that the drone could support. 	
 	

	

	

	

	

	

	

	

	

	

	

Figure 1. (top) The ARDrone Parrot (“the drone”) beside an iRobot
Create for comparison. (bottom) An image taken from the drone’s
forward camera while under remote control. The student in the red
shirt is using superman-like gestures, sensed by a Kinect, as input.

Rather than consider this limitation insurmountable,
however, we feel that the drone’s limitations motivate the
investigation of new types of tasks that even low-cost aerial
robots can support. The drone does have a number of strengths
we can leverage. First, though not precisely positionable, the
drone is reliably controllable, and will move in the direction
commanded, relative to its current pose, until encountering an
obstacle. (2) The drone offers both a downward and a forward
camera: their image streams can be multiplexed in the four
different combinations shown in Figure 3. It has a single range
sensor, a downward-pointed sonar, and sensors for its internal
electrical state. The drone also senses its orientation: the
simplest method to stop it when something has gone wrong is
to grab it mid-flight and flip it over, triggering an emergency
shut off of all of its motors. (3) The drone is robust – ours have
survived many crashes that we thought had ended their

working life. What is more, it is easily repairable, with ample
online documentation for the procedures involved.

B. Software: Willow Garage’s Robot Operating System
The ARDrone offers a C++ software development kit

(SDK) that provides source code through which users may
programmatically access the ASCII protocol it uses. In
experiementing with this SDK, we found it difficult to compile
and use across multiple operating systems. That said, with
enough effort, we succeeded in building applications that
allowed alternative interfaces by which to remote-control the
device. For example, Figure 1 (bottom) shows a still from a
movie the drone took as its flight was being controlled by
superman-like gestures made in front of a Kinect sensor. We
experimented with third-party drivers, too, including pure-Java
SDK and a pure Python interface, known as pydrone.

Because vision is the primary sensor available to the drone,
we sought to leverage the powerful vision library OpenCV [8],
stewarded by Willow Garage. To integrate the visual
processing with control as efficiently as possible, we decided to
use Willow Garage’s robotics middleware, known as the Robot
Operating System (ROS) [9]. ROS installed without a hitch
under Ubuntu, though the integration with the ARDrone’s SDK
did not proceed as smoothly. Because of this, we investigated
the pure-python pydrone package and adapted it to handle all
four image-stream possibilities in Figure 3.

ROS organizes the diverse hardware and software
components of a robotics system into nodes. Both message-
passing and subscriber-based interactions are supported: the
latter are called services. We implement a ROS wrapper around
pydrone that provided services to control the drone and to grab
the images from its cameras. That one-week effort provides a
layer of abstraction that presents the drone in the same manner
as any remote device with an image stream. This uniformity of
interface is what has made ROS an effective resource for so
many robotics efforts [10]. Figure 2 illustrates a block diagram
of our system’s software components (available in our
repository, as noted below).

Figure 2. A block diagram of the drone platform’s software

components, provided and organized by Willow Garage’s Robot
Operating System, or ROS. OpenCV and pydrone are used by the
drone-control.py file, providing state-machine control.

54

Figure 3. The four video-stream combinations available through our
adapted pydrone drivers. In addition to images from the downward

and forward cameras, each picture-in-picture (PIP) combination is also
possible. Our tasks used either one or the other, instead of PIP.

It is noteworthy that no member of the team had prior
experience with ROS or the drone. Even so, after two weeks of
learning the software and hardware interfaces, the group felt
comfortable enough with these resources to implement and
investigate several aerial tasks, as the next section details.

III. TASKS INVESTIGATED
The drone’s overhead point of view is one of its defining –

and most compelling – characteristics. Thus, we first sought to
use the drone to support the navigation of a ground robot by
evaluating obstacles that the ground robot could not fully
discern. We then evaluated the drone’s ability to undertake
point-to-point navigation using both its downward-pointing and
forward-pointing cameras. Finally, we addressed a crucial
limitation to aerial robots in uncontrived environments: their
lack of odometry and precise localization. We show here that a
vision-based approach to localization can provide excellent
information about the drone’s position using only the forward-
facing onboard camera.

A. Support of ground-vehicle navigation
Figure 4 shows snapshots from a traditional ground-robot

navigation task. An unmodified iRobot Create can only detect
obstacles with its front bumper: as a result, if it encounters a
wall (the bright brinks), it can not know which direction to turn
in order to more efficiently continue its path. The default
programming of the Create takes a wall-following approach,
i.e., it hugs the obstacle until it is clear or until another directive
supersedes the wall-following.

We used the drone, hovering overhead, to take images of
this ground robot and any obstacles it encountered. The walls
were distinctly colored to facilitate the image processing, and
the Create carried an exclamation-point-shaped landmark to
enable the computation of its position and orientation in the
groundplane. Figure 4 shows the interacting state-machine
controllers for each of the Create and the drone. Briefly, the

Create no longer requires a wall-following subroutine: it simply
moves forward until encountering an obstacle, at which time it
waits for direction from the drone. The drone, meanwhile,
follows the Create while it travels. When the overhead view is
needed, the drone’s images are segmented to determine
whether the Create has more space to navigate on its left or its
right. This message is passed on to the Create, which again
takes the lead for the team. Figure 4’s bottom panels illustrate
the image-processing used in locating the Create and
determining which direction to send the Create, when blocked.

Figure 4. (top) snapshots from a task in which the drone provides

aerial sensing support for ground-vehicle navigation: when the Create
encounters an obstacle, the drone determines the heading of the closer
edge of the wall. (middle) the interacting state-machine controllers for

the drone and Create (bottom) the task-specific image processing in
which the Create’s landmark is found in order to find its pose; pose-

specific segmentation of the wall then determines the correct heading.

Results In addition to success in our lab, this proof-of-
concept task was demonstrated at 2011’s Global Conference on
Educational Robotics [11], the venue of the BotBall
competition’s finals. There, several handoffs of control from
the drone to the Create were exhibited, including a three-
minute run in which the walls had to be repositioned several
times in order to keep both robots within the exhibition area.
Figure 4 uses several snapshots from those runs.

Lessons learned The most challenging portions of this
navigation-support task were (1) ensuring the drone could
maintain its downward view of the Create as it hovered or
followed behind it and (2) extracting and reasoning about the
exclamation-point landmark designed for this task. Both of
these challenges stem, in part, from the limited field of view
and limited resolution of the downward camera. In response to
these problems, the following navigation tasks first tried more
distinctive landmarks and then used the forward camera in
support of the drone’s own navigation.

B. Point-to-point navigation tasks
Because the drone does not offer even rough relative

odometry, point-to-point navigation is far more challenging on
the drone than on ground robots such as the Create. To test

55

whether point-to-point tasks were feasible at all, we
implemented two instances: for one, an autonomous room-and-
hallway navigation routine that used landmarks and the drone’s
forward camera. Figure 5 (top) summarizes this routine. The
second was a one-segment “hop” from the hula hoop at right in
Figure 5 (middle) to the one at left in that image.

The hoops are only for human observers: to mitigate the
difficulties with the exclamation-point landmark in the
previous task, this point-to-point hop used April Tags [12] in
the middle of each hoop as its basis for localization. Integrating
the AprilTag library, which is in Java, into our ROS-based C++
and Python codebase was handled without a problem by
making external calls. Figure 5 depicts the image processing,
the state machine, and stills from one of the hops.

Figure 5. (top) stills from a point-to-point navigation task using the

drone’s forward camera and the color landmark indicating the door to
the right (bottom) the point-to-point “hop” using AprilTags to

designate locations. If it drifts away, he drone hunts for its start tag,
and centers on it. The relative locations of the tags are known so that,
once localized, the drone can “kick” in the correct direction toward the

next tag. It then repeats the process until the goal tag is located.

Results and lessons learned The point-to-point hop turned
out to be considerably more difficult than the navigation based
on the forward camera. With this task, the drawbacks of using
the downward camera for pose estimation became much
clearer: both deliberate and accidental drone motions cause
huge changes to the downward camera’s field of view. With
completely new image frames possible with each timestep,
servoing a position or orientation error to zero is very difficult,
and the system spends much of its time re-acquiring the
landmark of interest: the state shown in the leftmost bottom
frame of Figure 5.

In developing such applications, sliding-scale autonomy is
crucial. Our interface allowed the human observer to change
the robot’s current state and, by default, required the drone to
ask an operator before it was permitted to change state. This
layer of control made interacting with the system – and
debugging it – much more efficient.

These two examples made it clear that the forward camera
would provide a better basis for long-distance, multiple-step

navigation tasks. They also made clear than the crucial
component needed to support such tasks is robust localization.
The final investigation asked whether we could replace
contrived landmarks such as Figure 5’s in favor of the natural
textures within the field of view of the drone’s forward camera.

C. Localization within image-based maps
Without odometry, aerial autonomy is even more dependent

on sensor-based localization than ground robots. The shared
autonomy and point-to-point tasks, though successful, were
least robust in their systems’ pose-estimation of the drone
relative to the task at hand. Thus, our final task focused on
designing and evaluating a robust vision-based localization
system. To avoid relying on contrived landmarks, we used
SURF feature-matching as the basis for our approach [13],
relying on OpenCV’s implementation of SURF descriptors and
approximate nearest-neighbor matching for the basic building
blocks of the algorithm.

Appropriate to a vision-only platform, the drone’s map of
the environment was purely visual. At each point of interest
(one node in a graph of locations) we took, by hand, 12 images
in roughly 30° intervals. Because the field of view of the
camera is 60°, the resulting images overlap to form a complete
visual panorama making up the visual representation at that
node. A four-location map thus consists of 48 distinct poses: 12
possible orientations from each of the four nodes in the map.
Figure 6 shows an example graph, its images, and the image-
matching using SURF features. Note that we did not stitch the
12 images together into a cylindrical panorama; rather, we
extracted the SURF features from each image and allowed that
set of features to represent the span of orientations within the
image’s field of view at that node in the map.

Figure 6. (top) two example images and their locations in the graph –

note that these two have no overlapping field of view, but there are
many similar features between them in this lab environment (bottom)

A novel, unmapped image is shown adjacent to its three best map
images with SURF-feature matches shown. The estimated poses

appear with length and brightness proportional to their likelihood.

With the map constructed, the localization algorithm
proceeds as follows:

56

(1) The drone acquires a new image from its forward camera,
and the SURF features are extracted from that image

(2) For SURF feature in the acquired image, the closest match
is found in each of the map’s images

(3) Based on features’ matches, each of the map images earns
a “likelihood” score. We describe and contrast scoring
approaches and filters for feature matching below.

(4) The map image with the highest overall score is declared
the current location of the drone.

Runtime concerns Thus, each map image is being
considered as a possible match for each novel image grabbed
by the drone. On our maps of 36 or 48 images this image-
matching ran at 2-3 frames per second, including visualization.
As it stands, however, scoring every map image will not scale
up efficiently to larger maps. However, a Markov- or Monte-
Carlo-localization approach [14,15] will cull all but small
subgraphs of possibilities out of a much larger map. These
larger systems would then use the above image-matching as
their innermost subroutine. Our timing results thus provide
insight into the extent of pose-culling needed in order to run
smoothly.

Scoring images Step (3), above, allows for several
possibilities for defining the score of each stored map image
with respect to a novel image of the environment. In addition, it
is possible to filter the SURF feature-matches based on their
image contexts. We tested all combinations of two scoring
functions with the presence or absence of two filters in
evaluating our localization algorithm. First, the simple scoring
function returns the count of SURF features in the map image
that had a match in the novel image within a Euclidean-
distance of 0.1, measured in the 128-dimensional SURF-
descriptor space (not in the image’s pixel coordinates!)
Because the simple scoring did not distinguish excellent SURF
matches from borderline matches, we also implemented a
scaled scoring metric that summed a value inversely
proportional to the SURF-descriptor difference between the
best matches.

In addition to using both scoring functions on all matches in
each map image, we tested two filtering strategies: one using a
ratio-distance threshold and one using only bidirectional best-
matches. The ratio-distance, proposed in [16], keeps only
matches in which the first-nearest neighbor (fnn) is
significantly nearer to the query feature than the second
nearest-neighbor (snn). We used a threshold of 0.4 in the ratio
of fnn/snn. The bidirctional match test used only features in
which the query feature and the map feature in question were
each the best match of the other. In feature-poor images, this
constrains each query feature and each map feature to only one
best match. Figure 7 summarizes these scoring functions and
filtering techniques. Figure 8 shows characteristic successful
and unsuccessful results of the image-matching. The
unexpectedly strong results there for some of the feature-poor
images motivated the bidirectional best-matches filter.

Figure 7 also reports the accuracy of the localization results
across all combinations of filter use and scoring strategies. The
“position” data reflect the percentage of novel images whose
node in the graph was correctly identified and the “orientation”

data reflect the percentage whose absolute angle was within our
resolution of 30°. The images come from two different data-
collection passes for which ground-truth was known. The first
pass involved taking images at 12 orientations in each of four
nodes (those of the graph depicted). The second pass involved
imaging the same environment at a different time of day and at
orientations and locations that did not precisely match the
originals (they were hand-collected). The data sets and the full
source code tree are available at our project’s repository at
https://svn.cs.hmc.edu/svn/robotics-­‐2011/.

Figure 7. summary of the scoring functions and filters used in the

markerless image-based localization using SURF features

Results and lessons learned It is noteworthy that the
choice of scoring function was far less important than filtering
the SURF features so that only the most likely correct matches
were used. In fact, any one of the improvements over the
simple match-counting scoring function yielded the greatest
gains in localization accuracy. The 97.9% correct figure for
location results from mis-localizing only one of the 48 images.
The 80% accuracy in orientation estimation results from 10
mismatches from the correct orientation. The results are even
better than this very conservative figure would suggest,
however, because in 9 of the 10 missed cases, the orientation
was estimated as a single 30° increment away from the correct
orientation. In practice, this level of accuracy (a 90° range of
possibilities, instead of a 30° range) is almost as useful: the
point-to-point motions need to be able to handle even larger
unmodeled displacements because of the jostling of the drone.

Thus, image-based localization without landmarks – at least
within a small map of about 50 possibilities – offers a powerful
foundation for implementing tasks that aerial autonomy can
support: environmental surveillance, sensing support of ground
robots, or safe, independent point-to-point navigation in
advance of a shared-autonomy task at a distance.

57

Figure 8. two more sets of results showing the improvement obtained

with the bidirectional-match filter. Details appear in the text.

IV. PERSPECTIVE
It is remarkable that a complete set of resources for

researching autonomous aerial robotics is now available for fo
the cost of a $300 ARDrone (as long as a wireless-enabled
netbook or desktop is already available). Indeed, equipping a
Create with two cameras and wifi communications costs
considerably more! Yet more important than the cost is the
expense in time: the hardware, software, and algorithms
presenting in this paper were integrated without the kinds of
steep learning curves that require graduate-level, i.e., full-time,
investment. The undergraduate team that implemented the
fundamental AI robotics of localization and navigation (with
hand-built maps) came to the project with no prior experience
in ROS, the drone, or the algorithms involved.

Thus, as a practical resource for AI and autonomous
investigations, aerial robots are now accessible to an
unprecedently large audience. As further evidence of this, the
Kiss Institute for Practical Robotics has begun offering an
Autonomous Aerial Vehicle Contest using the drone and its
custom control computer, the CBC [17].

The accessibility of the hardware and software, in fact,
presents an opportunity for educators: there are comparatively
few resources that offer curricular support for aerial robotics.
The ROS middleware, in fact, opens the possibility for even
more: it serves equally well as an integrated interface to ground
platforms, sensors such as the Kinect, and a wide variety of
simulators and visualization tools. Thus, both educators and
researchers of all stripes can now combine traditional ground-
vehicle path-planning and state-machine control with vision-
guided aerial vehicles in autonomous teams. We hope that with

the algorithms presented here, we can help expand the role of
aerial robots as captivating and accessible resources for both
research and education in autonomous artificial intelligence.

ACKNOWLEDGMENTS
The authors acknowledge and thank the National Science

Foundation (REU CNS-1063169 and CPATH #0939149), The
Rose Hills Foundation, and Harvey Mudd College for their
support of this work, along with our reviewers' suggestions!

REFERENCES
[1] D. Schneider. 2011. "Drone Aircraft: How the Drones Got Their

Stingers," IEEE Spectrum 48(1):47-50 (January 2011)
[2] L. G. Weiss. 2011. "Autonomous robots in the fog of war," IEEE

Spectrum 48(8):30-57 (August 2011)
[3] P. Abbeel, A. Coates and A. Y. Ng. 2010. "Autonomous Helicopter

Aerobatics through Apprenticeship Learning," International Journal of
Robotics Research 29(13) November, 2010, pp. 1608-1639.

[4] D. Mellinger and V. Kumar. 2011 "Minimum Snap Trajectory
Generation and Control for Quadrotors," Proceedings, Int. Conf. on
Robotics and Automation, Shanghai, China, May 2011.

[5] D. Mellinger, Q. Lindsey, M. Shomin, V. Kumar. 2011. "Design,
Modeling, Estimation and Control for Aerial Grasping and
Manipulation," Proceedings, Int. Conf. on Intelligent Robots and
Systems (IROS '11), Sept. 2011.

[6] S. Hrabar, G. S. Sukhatme, P. Corke, K. Usher, and J. Roberts. 2005.
"Combined optic-flow and stereo-based navigation of urban canyons for
a UAV," Proceedings of the Int. Conf. on Intelligent Robots and
Systems (IROS Aug. '05) pp.3309-3316.

[7] C. Bills, J. Chen, and A. Saxena. 2011 "Autonomous MAV Flight in
Indoor Environments using Single Image Perspective Cues,"
Proceedings of the International Conference on Robotics and
Automation (ICRA 2011).

[8] G. Bradski and A. Kaehler. 2008. Learning OpenCV: Computer Vision
with the OpenCV Library. O'Reilly Media, publishers, Sebastopol, CA.

[9] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R.
Wheeler, and A. Ng. 2009 ROS: an open-source Robot Operating
System," Proceedings, ICRA '09 Workshop on Open Source Software,
May 12-17, 2009 Kobe, Japan, IEEE Press.

[10] S. Cousins. 2011. "Exponential Growth of ROS," IEEE Robotics and
Automation Magazine, pp. 19-20, March 2011.

[11] K. Sheely, S. Matsumoto, M. Sok, N. Berezny, L. de Greef, J. Vasquez,
D. Lingenbrink, B. Jensen, and Z. Dodds. 2011 “Coordinated Navigation
with Aerial/Ground Robots,” Proceedings of the 2011 Global
Conference on Educational Robotics, Robot Exhbition, July 9-13, Irvine,
CA.

[12] E. Olson, 2010. "AprilTag: A robust and flexible multi-purpose fiducial
system," Technical Report, University of Michigan APRIL Laboratory,
May 2010.

[13] H. Bay, T. Tuytelaars, and L. Van Gool. 2006. "Surf: Speeded up robust
features," Proceedings of the European Conference on Computer Vision
(ECCV '06), pp. 404-417.

[14] D. Fox, W. Burgard, and S. Thrun. 1999. "Markov Localization for
Mobile Robots in Dynamic Environments," Journal of Artificial
Intelligence Research, 11, pp. 391-427.

[15] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. 1999. "Monte Carlo
Localization: Efficient Position Estimation for Mobile Robots,"
Proceedings, Conference of the Association for the Advancement of
Artificial Intelligence (AAAI '99), pp. 343-349.

[16] M. Brown, R. Szeliski, and S. Winder. 2005 “Multi-Image Matching
using Multi-Scale Oriented Patches,” Proceedings of the 2005
Conference on Computer Vision and Pattern Recognition (CVPR05),
June 20-26, 2005, San Diego, CA, pp. 510-517.

[17] KIPR autonomous aerial vehicle contest website, accessed 11/29/2011,
at http://kipr.org/2011-kipr-autonomous-aerial-vehicle-contest

58

