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Abstract — This work presents a combination of software and 
hardware that makes aerial autonomy substantially more 
accessible both in terms of programmatic complexity and in 
terms of cost. We use the ARDrone quadrotor helicopter and 
Willow Garage's Robot Operating System software infrastructure 
to demonstrate several autonomous tasks.  Using vision as the 
sole aerial sensor, we demonstrate point-to-point navigation, 
aerial support of a ground robots, and robot localization within 
image-based maps. In contrasting several variations of SURF-
feature matching, we demonstrate that low-cost aerial platforms 
can support robust, landmark-free visual spatial reasoning. This 
evaluation shows that aerial platforms can be practical, cost- and 
time-effective components of task-performing systems. We argue 
that aerial autonomy should be considered a broadly accessible 
resource, within reach of any investigator or educator of AI 
robotics. 

Keywords: aerial autonomy, quadcopter visual control, image-based 
localization 

I.  INTRODUCTION 
Aerial platforms have a long history within the field of 

robotics. Some of today's most impressive remote systems are 
aerial vehicles acting under shared-autonomy with human 
operators [1,2]. Fully autonomous aerial vehicles demonstrate 
remarkably acrobatic maneuvers [3,4] and cooperative task-
completion [5].  

Yet to date, aerial autonomy has been a specialized subfield 
that required resources only a few institutions could sustain. 
Traditional fixed-wing aircraft need large staging areas for 
take-off, flight, and landing. They also require long-distance 
radio links to maintain communications with offboard 
computational resources – or, at the least, the opportunity for 
emergency human intervention. Even helicopters, though 
usable indoors in closer quarters, are often confined to 
specially-designed indoor spaces in which external motion-
capture systems accurately estimate the pose of the vehicles. In 
short, autonomous aerial robots have not yet earned the 
description practical. 

Recent software and hardware advances suggest that this 
exclusivity may be changing. Low-cost platforms that exploit 
the toy industry’s economies of scale and freely available 
software scaffolding significantly lower the barriers to entry in 
investigating autonomous aerial robotics. As this paper shows, 
however, these very affordable and practical resources also 
change the kinds of tasks possible aerial In particular, the 
inevitable compromises in control make AI-type tasks the most 

promising foundation for aerial investigations. In short, we find 
that aerial robots are now as accessible as more traditional 
ground robots both as a platform for education, research and 
cooperative task-accomplishment.  

A. Related work and this work’s contributions 
Long-distance vision-based aerial autonomy has a deep 

history [6], but far less work has been done in small-scale 
settings. Here, we follow the work of Bills et al [7], in which 
perspective cues from large line segments guide a quadrotor 
copter through an uncontrived indoor environment. We agree 
that computer vision is the most natural – and accessible – 
sensing modality for aerial platforms. Complementing the use 
of line segments, we investigate the effectiveness of local 
visual features including color blobs, contrived landmark 
patterns, and SURF-described textures for task support.  

The tasks we investigate comprise (1) autonomous aerial 
sensing support for ground-vehicle navigation, (2) point-to-
point navigation using artificial landmarks, and (3) landmark-
free localization within a map of panoramas. By undertaking 
these tasks, we contribute 

• a field evaluation of the hardware (the ARDrone) and 
software infrastructure (ROS) used, particularly for other 
researchers and educators considering aerial platforms 

• software drivers that support the drone through ROS   

• algorithms for vision-based localization and control of the 
quadcopter using only on-board sensing 

We conclude with perspective on the benefits and drawbacks of 
aerial platforms as a basis for educational and research 
robotics. We hope that this work makes aerial robotics a more 
practical – and productive – area of investigation even under 
significant resource and time constraints.  

II. HARDWARE AND SOFTWARE OVERVIEW 

A. Hardware: the ARDrone Parrot 
Beside an iRobot Create for scale, the $300 ARDrone 

Parrot quadrotor helicopter (the “drone”) appears in Figure 1 
(top). A remote-control toy, the drone operates by sending and 
receiving ASCII strings via 802.11b. The drone provides its 
own wireless hub to which any external wifi device can 
connect as a client. A user can fly the drone capably within ten 
minutes out of the box using one of the the freely available 
Android or iOS clients. 
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As a robot, the drone has significant advantages and 
disadvantages. In the latter category are (1) a limited battery 
life of about 15 minutes of flight, though its camera lasts for 
well over an hour on a single battery charge – a useful feature 
for debugging image-processing routines! (2) ARDrone 
publishes full specifications of the ASCII protocol it uses, but it 
provides no details of the quadcopter’s internal firmware 
control nor its electrical/mechanical system. Short of fully 
reverse-engineering the device, the drone is most usefully 
considered a black box that accepts velocity commands and 
broadcasts a video stream and internal data such as battery 
charge. Thus, standard interaction with the drone is entirely 
off-board.  (3) Partly because of the available API calls and 
even more because of the inherent difficulties of stable 
hovering, the most striking disadvantage of the drone is that it 
is not a precisely positionable device. Even in simple real-
world envinronments such as indoor hallways, foyers, and 
laboratories, the downdraft from the rotors pushes the drone in 
unpredictable ways; neither the sensing nor the control 
bandwidth suffices to counteract this. In short, we quickly 
realized that the remarkable perching examples from [4,5] 
would not be the kinds of tasks that the drone could support. 	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Figure 1. (top) The ARDrone Parrot (“the drone”) beside an iRobot 
Create for comparison. (bottom) An image taken from the drone’s 
forward camera while under remote control. The student in the red 
shirt is using superman-like gestures, sensed by a Kinect, as input. 

Rather than consider this limitation insurmountable, 
however, we feel that the drone’s limitations motivate the 
investigation of new types of tasks that even low-cost aerial 
robots can support. The drone does have a number of strengths 
we can leverage. First, though not precisely positionable, the 
drone is reliably controllable, and will move in the direction 
commanded, relative to its current pose, until encountering an 
obstacle. (2) The drone offers both a downward and a forward 
camera: their image streams can be multiplexed in the four 
different combinations shown in Figure 3. It has a single range 
sensor, a downward-pointed sonar, and sensors for its internal 
electrical state. The drone also senses its orientation: the 
simplest method to stop it when something has gone wrong is 
to grab it mid-flight and flip it over, triggering an emergency 
shut off of all of its motors. (3) The drone is robust – ours have 
survived many crashes that we thought had ended their 

working life. What is more, it is easily repairable, with ample 
online documentation for the procedures involved. 

B. Software: Willow Garage’s Robot Operating System 
The ARDrone offers a C++ software development kit 

(SDK) that provides source code through which users may 
programmatically access the ASCII protocol it uses. In 
experiementing with this SDK, we found it difficult to compile 
and use across multiple operating systems. That said, with 
enough effort, we succeeded in building applications that 
allowed alternative interfaces by which to remote-control the 
device. For example, Figure 1 (bottom) shows a still from a 
movie the drone took as its flight was being controlled by 
superman-like gestures made in front of a Kinect sensor. We 
experimented with third-party drivers, too, including pure-Java 
SDK and a pure Python interface, known as pydrone.  

Because vision is the primary sensor available to the drone, 
we sought to leverage the powerful vision library OpenCV [8], 
stewarded by Willow Garage. To integrate the visual 
processing with control as efficiently as possible, we decided to 
use Willow Garage’s robotics middleware, known as the Robot 
Operating System (ROS) [9]. ROS installed without a hitch 
under Ubuntu, though the integration with the ARDrone’s SDK 
did not proceed as smoothly. Because of this, we investigated 
the pure-python pydrone package and adapted it to handle all 
four image-stream possibilities in Figure 3.  

ROS organizes the diverse hardware and software 
components of a robotics system into nodes. Both message-
passing and subscriber-based interactions are supported: the 
latter are called services. We implement a ROS wrapper around 
pydrone that provided services to control the drone and to grab 
the images from its cameras. That one-week effort provides a 
layer of abstraction that presents the drone in the same manner 
as any remote device with an image stream. This uniformity of 
interface is what has made ROS an effective resource for so 
many robotics efforts [10]. Figure 2 illustrates a block diagram 
of our system’s software components (available in our 
repository, as noted below). 

  
Figure 2. A block diagram of the drone platform’s software 

components, provided and organized by Willow Garage’s Robot 
Operating System, or ROS. OpenCV and pydrone are used by the 
drone-control.py file, providing state-machine control. 
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Figure 3. The four video-stream combinations available through our 
adapted pydrone drivers. In addition to images from the downward 

and forward cameras, each picture-in-picture (PIP) combination is also 
possible. Our tasks used either one or the other, instead of PIP. 

It is noteworthy that no member of the team had prior 
experience with ROS or the drone. Even so, after two weeks of 
learning the software and hardware interfaces, the group felt 
comfortable enough with these resources to implement and 
investigate several aerial tasks, as the next section details.  

III. TASKS INVESTIGATED 
The drone’s overhead point of view is one of its defining – 

and most compelling – characteristics. Thus, we first sought to 
use the drone to support the navigation of a ground robot by 
evaluating obstacles that the ground robot could not fully 
discern. We then evaluated the drone’s ability to undertake 
point-to-point navigation using both its downward-pointing and 
forward-pointing cameras. Finally, we addressed a crucial 
limitation to aerial robots in uncontrived environments: their 
lack of odometry and precise localization. We show here that a 
vision-based approach to localization can provide excellent 
information about the drone’s position using only the forward-
facing onboard camera. 

A. Support of ground-vehicle navigation 
Figure 4 shows snapshots from a traditional ground-robot 

navigation task. An unmodified iRobot Create can only detect 
obstacles with its front bumper: as a result, if it encounters a 
wall (the bright brinks), it can not know which direction to turn 
in order to more efficiently continue its path. The default 
programming of the Create takes a wall-following approach, 
i.e., it hugs the obstacle until it is clear or until another directive 
supersedes the wall-following.  

We used the drone, hovering overhead, to take images of 
this ground robot and any obstacles it encountered. The walls 
were distinctly colored to facilitate the image processing, and 
the Create carried an exclamation-point-shaped landmark to 
enable the computation of its position and orientation in the 
groundplane. Figure 4 shows the interacting state-machine 
controllers for each of the Create and the drone. Briefly, the 

Create no longer requires a wall-following subroutine: it simply 
moves forward until encountering an obstacle, at which time it 
waits for direction from the drone. The drone, meanwhile, 
follows the Create while it travels. When the overhead view is 
needed, the drone’s images are segmented to determine 
whether the Create has more space to navigate on its left or its 
right. This message is passed on to the Create, which again 
takes the lead for the team. Figure 4’s bottom panels illustrate 
the image-processing used in locating the Create and 
determining which direction to send the Create, when blocked. 

 
Figure 4. (top) snapshots from a task in which the drone provides 

aerial sensing support for ground-vehicle navigation: when the Create 
encounters an obstacle, the drone determines the heading of the closer 
edge of the wall. (middle) the interacting state-machine controllers for 

the drone and Create (bottom) the task-specific image processing in 
which the Create’s landmark is found in order to find its pose; pose-

specific segmentation of the wall then determines the correct heading. 

Results   In addition to success in our lab, this proof-of-
concept task was demonstrated at 2011’s Global Conference on 
Educational Robotics [11], the venue of the BotBall 
competition’s finals. There, several handoffs of control from 
the drone to the Create were exhibited, including a three-
minute run in which the walls had to be repositioned several 
times in order to keep both robots within the exhibition area. 
Figure 4 uses several snapshots from those runs.  

Lessons learned   The most challenging portions of this 
navigation-support task were (1) ensuring the drone could 
maintain its downward view of the Create as it hovered or 
followed behind it and (2) extracting and reasoning about the 
exclamation-point landmark designed for this task. Both of 
these challenges stem, in part, from the limited field of view 
and limited resolution of the downward camera. In response to  
these problems, the following navigation tasks first tried more 
distinctive landmarks and then used the forward camera in 
support of the drone’s own navigation. 

B. Point-to-point navigation tasks 
Because the drone does not offer even rough relative 

odometry, point-to-point navigation is far more challenging on 
the drone than on ground robots such as the Create. To test 
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whether point-to-point tasks were feasible at all, we 
implemented two instances: for one, an autonomous room-and-
hallway navigation routine that used landmarks and the drone’s 
forward camera. Figure 5 (top) summarizes this routine. The 
second was a one-segment “hop” from the hula hoop at right in 
Figure 5 (middle) to the one at left in that image. 

The hoops are only for human observers: to mitigate the 
difficulties with the exclamation-point landmark in the 
previous task, this point-to-point hop used April Tags [12] in 
the middle of each hoop as its basis for localization. Integrating 
the AprilTag library, which is in Java, into our ROS-based C++ 
and Python codebase was handled without a problem by 
making external calls. Figure 5 depicts the image processing, 
the state machine, and stills from one of the hops. 

 
Figure 5. (top) stills from a point-to-point navigation task using the 

drone’s forward camera and the color landmark indicating the door to 
the right (bottom) the point-to-point “hop” using AprilTags to 

designate locations. If it drifts away, he drone hunts for its start tag, 
and centers on it.  The relative locations of the tags are known so that, 
once localized, the drone can “kick” in the correct direction toward the 

next tag. It then repeats the process until the goal tag is located.  

Results and lessons learned    The point-to-point hop turned 
out to be considerably more difficult than the navigation based 
on the forward camera. With this task, the drawbacks of using 
the downward camera for pose estimation became much 
clearer: both deliberate and accidental drone motions cause 
huge changes to the downward camera’s field of view. With 
completely new image frames possible with each timestep, 
servoing a position or orientation error to zero is very difficult, 
and the system spends much of its time re-acquiring the 
landmark of interest: the state shown in the leftmost bottom 
frame of Figure 5. 

In developing such applications, sliding-scale autonomy is 
crucial. Our interface allowed the human observer to change 
the robot’s current state and, by default, required the drone to 
ask an operator before it was permitted to change state. This 
layer of control made interacting with the system – and 
debugging it – much more efficient.  

These two examples made it clear that the forward camera 
would provide a better basis for long-distance, multiple-step 

navigation tasks. They also made clear than the crucial 
component needed to support such tasks is robust localization. 
The final investigation asked whether we could replace 
contrived landmarks such as Figure 5’s in favor of the natural 
textures within the field of view of the drone’s forward camera. 

C. Localization within image-based maps 
Without odometry, aerial autonomy is even more dependent 

on sensor-based localization than ground robots. The shared 
autonomy and point-to-point tasks, though successful, were 
least robust in their systems’ pose-estimation of the drone 
relative to the task at hand. Thus, our final task focused on 
designing and evaluating a robust vision-based localization 
system. To avoid relying on contrived landmarks, we used 
SURF feature-matching as the basis for our approach [13], 
relying on OpenCV’s implementation of SURF descriptors and 
approximate nearest-neighbor matching for the basic building 
blocks of the algorithm. 

Appropriate to a vision-only platform, the drone’s map of 
the environment was purely visual. At each point of interest 
(one node in a graph of locations) we took, by hand, 12 images 
in roughly 30° intervals. Because the field of view of the 
camera is 60°,  the resulting images overlap to form a complete 
visual panorama making up the visual representation at that 
node. A four-location map thus consists of 48 distinct poses: 12 
possible orientations from each of the four nodes in the map. 
Figure 6 shows an example graph, its images, and the image-
matching using SURF features. Note that we did not stitch the 
12 images together into a cylindrical panorama; rather, we 
extracted the SURF features from each image and allowed that 
set of features to represent the span of orientations within the 
image’s field of view at that node in the map. 

 
Figure 6. (top) two example images and their locations in the graph – 

note that these two have no overlapping field of view, but there are 
many similar features between them in this lab environment (bottom) 

A novel, unmapped image is shown adjacent to its three best map 
images with SURF-feature matches shown. The estimated poses 

appear with length and brightness proportional to their likelihood. 

With the map constructed, the localization algorithm 
proceeds as follows: 
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(1) The drone acquires a new image from its forward camera, 
and the SURF features are extracted from that image 

(2) For SURF feature in the acquired image, the closest match 
is found in each of the map’s images 

(3) Based on features’ matches, each of the map images earns 
a “likelihood” score. We describe and contrast scoring 
approaches and filters for feature matching below. 

(4) The map image with the highest overall score is declared 
the current location of the drone. 

Runtime concerns   Thus, each map image is being 
considered as a possible match for each novel image grabbed 
by the drone. On our maps of 36 or 48 images this image-
matching ran at 2-3 frames per second, including visualization. 
As it stands, however, scoring every map image will not scale 
up efficiently to larger maps. However, a Markov- or Monte-
Carlo-localization approach [14,15] will cull all but small 
subgraphs of possibilities out of a much larger map. These 
larger systems would then use the above image-matching as 
their innermost subroutine. Our timing results thus provide 
insight into the extent of pose-culling needed in order to run 
smoothly. 

Scoring images     Step (3), above, allows for several 
possibilities for defining the score of each stored map image 
with respect to a novel image of the environment. In addition, it 
is possible to filter the SURF feature-matches based on their 
image contexts. We tested all combinations of two scoring 
functions with the presence or absence of two filters in 
evaluating our localization algorithm. First, the simple scoring 
function returns the count of SURF features in the map image 
that had a match in the novel image within a Euclidean-
distance of 0.1, measured in the 128-dimensional SURF-
descriptor space (not in the image’s pixel coordinates!) 
Because the simple scoring did not distinguish excellent SURF 
matches from borderline matches, we also implemented a 
scaled scoring metric that summed a value inversely 
proportional to the SURF-descriptor difference between the 
best matches.  

In addition to using both scoring functions on all matches in 
each map image, we tested two filtering strategies: one using a 
ratio-distance threshold and one using only bidirectional best-
matches. The ratio-distance, proposed in [16], keeps only 
matches in which the first-nearest neighbor (fnn) is 
significantly nearer to the query feature than the second 
nearest-neighbor (snn). We used a threshold of 0.4 in the ratio 
of fnn/snn. The bidirctional match test used only features in 
which the query feature and the map feature in question were 
each the best match of the other. In feature-poor images, this 
constrains each query feature and each map feature to only one 
best match. Figure 7 summarizes these scoring functions and 
filtering techniques. Figure 8 shows characteristic successful 
and unsuccessful results of the image-matching.  The 
unexpectedly strong results there for some of the feature-poor 
images motivated the bidirectional best-matches filter.  

Figure 7 also reports the accuracy of the localization results 
across all combinations of filter use and scoring strategies. The 
“position” data reflect the percentage of novel images whose 
node in the graph was correctly identified and the “orientation” 

data reflect the percentage whose absolute angle was within our 
resolution of 30°. The images come from two different data-
collection passes for which ground-truth was known. The first 
pass involved taking images at 12 orientations in each of four 
nodes (those of the graph depicted). The second pass involved 
imaging the same environment at a different time of day and at 
orientations and locations that did not precisely match the 
originals (they were hand-collected). The data sets and the full 
source code tree are available at our project’s repository at 
https://svn.cs.hmc.edu/svn/robotics-­‐2011/.  

 

 
Figure 7. summary of the scoring functions and filters used in the 

markerless image-based localization using SURF features 

Results and lessons learned   It is noteworthy that the 
choice of scoring function was far less important than filtering 
the SURF features so that only the most likely correct matches 
were used. In fact, any one of the improvements over the 
simple match-counting scoring function yielded the greatest 
gains in localization accuracy. The 97.9% correct figure for 
location results from mis-localizing only one of the 48 images. 
The 80% accuracy in orientation estimation results from 10 
mismatches from the correct orientation. The results are even 
better than this very conservative figure would suggest, 
however, because in 9 of the 10 missed cases, the orientation 
was estimated as a single 30° increment away from the correct 
orientation. In practice, this level of accuracy (a 90° range of 
possibilities, instead of a 30° range) is almost as useful: the 
point-to-point motions need to be able to handle even larger 
unmodeled displacements because of the jostling of the drone.  

Thus, image-based localization without landmarks – at least 
within a small map of about 50 possibilities – offers a powerful 
foundation for implementing tasks that aerial autonomy can 
support: environmental surveillance, sensing support of ground 
robots, or safe, independent point-to-point navigation in 
advance of a shared-autonomy task at a distance. 
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Figure 8. two more sets of results showing the improvement obtained 

with the bidirectional-match filter. Details appear in the text. 

IV. PERSPECTIVE 
It is remarkable that a complete set of resources for 

researching autonomous aerial robotics is now available for fo 
the cost of a $300 ARDrone (as long as a wireless-enabled 
netbook or desktop is already available). Indeed, equipping a 
Create with two cameras and wifi communications costs 
considerably more! Yet more important than the cost is the 
expense in time: the hardware, software, and algorithms 
presenting in this paper were integrated without the kinds of 
steep learning curves that require graduate-level, i.e., full-time, 
investment. The undergraduate team that implemented the 
fundamental AI robotics of localization and navigation (with 
hand-built maps) came to the project with no prior experience 
in ROS, the drone, or the algorithms involved.  

Thus, as a practical resource for AI and autonomous 
investigations, aerial robots are now accessible to an 
unprecedently large audience. As further evidence of this, the 
Kiss Institute for Practical Robotics has begun offering an 
Autonomous Aerial Vehicle Contest using the drone and its 
custom control computer, the CBC [17]. 

The accessibility of the hardware and software, in fact, 
presents an opportunity for educators: there are comparatively 
few resources that offer curricular support for aerial robotics. 
The ROS middleware, in fact, opens the possibility for even 
more: it serves equally well as an integrated interface to ground 
platforms, sensors such as the Kinect, and a wide variety of 
simulators and visualization tools. Thus, both educators and 
researchers of all stripes can now combine traditional ground-
vehicle path-planning and state-machine control with vision-
guided aerial vehicles in autonomous teams. We hope that with 

the algorithms presented here, we can help expand the role of 
aerial robots as captivating and accessible resources for both 
research and education in autonomous artificial intelligence.  
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