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ABSTRACT 
Health sensing through smartphones has received 
considerable attention in recent years because of the 
devices’ ubiquity and promise to lower the barrier for 
tracking medical conditions. In this paper, we focus on 
using smartphones to monitor newborn jaundice, which 
manifests as a yellow discoloration of the skin. Although a 
degree of jaundice is common in healthy newborns, early 
detection of extreme jaundice is essential to prevent 
permanent brain damage or death. Current detection 
techniques, however, require clinical tests with blood 
samples or other specialized equipment. Consequently, 
newborns often depend on visual assessments of their skin 
color at home, which is known to be unreliable. To this end, 
we present BiliCam, a low-cost system that uses 
smartphone cameras to assess newborn jaundice. We 
evaluated BiliCam on 100 newborns, yielding a 0.85 rank 
order correlation with the gold standard blood test. We also 
discuss usability challenges and design solutions to make 
the system practical.  
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Health sensing, mobile phones, neonatal jaundice, bilirubin, 
image processing. 

ACM Classification Keywords 
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INTRODUCTION 
A number of smartphone-based medical devices are 
becoming increasingly common for fitness [13], heart rate 

monitoring [30], pulmonology [18,19], point-of-care 
diagnostics [14,33], and various other health applications 
[1]. They demonstrate how the capabilities and ubiquity of 
modern smartphones make them excellent candidates for 
clinical and health platforms, despite their inherent sensing 
limitations. In this paper, we present the design and critical 
evaluation of assessing newborn jaundice using a 
smartphone in a study with 100 newborns. Our prototype, 
BiliCam, is a smartphone-based medical device that uses 
the embedded camera and a paper-based color calibration 
card to monitor newborn jaundice.  

Jaundice is defined as the yellow discoloration of the skin 
caused by excess bilirubin, a chemical byproduct of 
recycling old blood cells. It is one of the most common 
physiological conditions among newborns: an estimated 
84% of newborns develop jaundice [5]. A moderate level of 
bilirubin is normal in healthy newborns. However, if not 
treated, extreme levels can be fatal or cause devastating and 
irreversible brain damage. Accurate medical tests to assess 
this condition require a blood draw or the use of a 
specialized measuring device, making them impractical 
outside of medical settings. However, bilirubin levels 
typically peak well after most infants are discharged from 
the hospital. Consequently, visual assessment is the most 
common method to monitor jaundice in a family’s home, 
where clinical technology is unavailable, as well as at most 
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Figure 1. Parents or medical practitioners can monitor a newborn’s 
jaundice with their smartphones through BiliCam. 



outpatient clinics, where administering a blood test is 
logistically difficult. While parents and clinicians are 
usually able to visually identify the presence of jaundice, 
numerous studies show that even experienced healthcare 
providers cannot accurately estimate the severity of 
jaundice [26]. The importance of monitoring newborn 
jaundice at home under these conditions creates the need 
for an accessible screening system such as BiliCam.  

As demonstrated by their recent popularity for health 
sensing in the UbiComp community [1], smartphones offer 
distinct advantages as a medical platform in terms of cost, 
accessibility, and computational and sensing capabilities. 
The programmability and Internet connectivity of these 
devices allow algorithms to adapt much more effectively. 
Most importantly, their ubiquity enables a multitude of 
families with newborns to use their phones as medical 
devices, helping many of them avoid the cost, anxiety, and 
hassle of extra hospital visits.  

By leveraging these inherent advantages of smartphones, 
BiliCam mitigates the risks in visually assessing jaundice. 
BiliCam uses the phone’s built-in camera to photograph a 
newborn. After confirming that the images are usable, the 
system uploads the relevant portions to a server, which 
analyzes the newborn’s skin to estimate the bilirubin level. 
It then communicates the results back to the user and 
recommends a course of action. Each photograph includes a 
custom, low-cost color calibration card to help BiliCam 
adjust for different lighting conditions and apply color 
corrections. Other than the smartphone and the color 
calibration card, this non-invasive solution requires no 
additional hardware.  

Our research team includes experienced pediatricians who 
have helped to design and evaluate BiliCam. We conducted 
a clinical study to validate our smartphone-based approach 
with 100 newborn participants at the University of 
Washington Medical Center. We collected photographs of 
newborns with BiliCam within two hours of measuring total 
serum bilirubin levels (TSB), the medical gold standard. 
BiliCam compares to the TSB with a rank order correlation 
of 0.85 and a mean error of 2.0 mg/dl. We also compare 
BiliCam’s results to that of a transcutaneous bilirubi-
nometer (TcB), another non-invasive, although costly, 
technique that uses structured light to screen for high levels 
of bilirubin. We conclude that BiliCam cannot yet replace 
the TcB, but offers distinct cost and accessibility 
advantages that make it appropriate for screening newborns 
from home.  

We describe the image processing and machine-learning 
techniques used to infer bilirubin and show its robustness 
with a range of skin colors and lighting conditions. In 
tandem with several pilot deployments, these studies also 
informed important user interface considerations and future 
designs of BiliCam.  

EXPLANATION OF JAUNDICE AND TREATMENT 
Bilirubin is a natural product of the breakdown of expired 
red blood cells, which the liver further metabolizes for 
excretion. The accumulation of excess bilirubin results in 
the yellow discoloration of the skin known as jaundice. 
Newborns tend to metabolize bilirubin slower (as their 
livers may not function at full capacity yet), have blood 
cells with shorter lifespans, and have higher concentrations 
of red blood cells than adults. Consequently, jaundice is one 
of the most common medical conditions in newborns; up to 
84% of them develop jaundice during their first week of life 
[5]. This temporary excess of bilirubin is usually harmless. 
However, highly elevated concentrations of bilirubin in 
newborns are neurotoxic and can irreversibly damage the 
brain. This potentially lethal condition, called kernicterus, 
can cause deafness or hearing loss, cerebral palsy, and 
profound developmental delay. Fortunately, kernicterus is 
avoidable through early detection and treatment. High 
levels of bilirubin can be controlled through phototherapy, a 
process that involves bathing the affected newborn in 
specific wavelengths of blue light that convert bilirubin into 
a harmless, excretable form. For extremely high levels, 
excess bilirubin must be removed through exchange blood 
transfusions [26].  

Medically Accepted Methods to Measure Bilirubin  
To determine whether a newborn should receive 
phototherapy or an exchange blood transfusion, doctors or 
nurses reference specialized graphs with the newborn’s age, 
number of weeks of gestation, and bilirubin level [26]. One 
such graph is the Bhutani nomogram [4], like the one 
shown in Figure 2, which came from an extensive study by 
Bhutani et al. The nomogram provides a means to assess a 
newborn’s risk based on the percent of newborns in the 
study with given bilirubin levels and ages. High-
intermediate risk is considered above the 75th percentile, 
and high risk above the 95th percentile. Bilirubin levels are 
commonly expressed in milligrams per deciliter (mg/dl) or 
micromoles of bilirubin per liter (µmol/L) [26]. 

 
Figure 2. A Bhutani nomogram used to assess a newborn's risk 
based on bilirubin level and age, generated with risk zone 
boundaries from BiliTool™ [23,24]. 

Clinicians measure the blood concentration of bilirubin on a 
continuous scale with either a TSB or TcB. A total serum 



bilirubin (TSB) test directly measures the bilirubin from a 
blood sample. Although invasive, the TSB is the most 
accurate way to measure bilirubin and serves as the medical 
gold standard. A transcutaneous bilirubinometer (TcB) is a 
specialized meter for a non-invasive alternative that 
indirectly measures bilirubin levels. Health practitioners 
touch the end of this device to the newborn’s forehead or 
sternum. It emits specific wavelengths of light and 
measures the resultant reflectance and absorbance of the 
skin to infer bilirubin levels. TcBs are considered by the 
medical community to be unreliable above 14.5 mg/dl of 
bilirubin, thus high measures from TcBs must be followed 
by a TSB [26]. In this way, TcBs are used as screening 
tools. A TcB also costs several thousands of dollars and 
requires frequent calibration. Although large nurseries 
usually have more than one TcB, we found that TcBs are 
not common in primary care clinician offices and depend 
on the expected number of newborn patients. Hence, this 
screening tool is not available in all clinics due to its cost. 

Visual assessments are common in outpatient settings, such 
as physician offices and a family’s home, where the 
aforementioned technology is unavailable. While both 
parents and clinicians are usually able to identify the 
presence of jaundice, there is ample evidence from many 
studies that even experienced healthcare providers cannot 
accurately estimate the severity of jaundice through visual 
assessement. In studies comparing visual assessment of 
jaundice with TSB levels, correlation coefficients are 
generally in the 0.35 – 0.75 range with poor inter-observer 
agreement [26]. More concerning is evidence indicating 
that clinicians frequently underestimate the severity of 
jaundice when using this method. Visual assessments have 
even proven unreliable with the aid of reference colors, 
such as with an icterometer [26]. Icterometers are 
specialized plexiglass rulers marked with different tones of 
yellow to reference when pressed against a newborn’s skin 
[2]. Clinical guidelines explicitly advocate against using 
icterometers [26]. 

A number of studies investigate other methods to predict 
high bilirubin levels, including measuring blood bilirubin or 
antiglobulin in umbilical cords and end-tidal carbon 
monozide measurement (ETCOc). They have so far proven 
either unsuccessful or unreliable [26]. 

Although there are brief proposals currently posted online 
about using mobile phone cameras to measure neonatal 
jaundice [3,28], they provide little detail and do not 
mention any clinical studies. We believe this is the first 
work to describe, in detail, an approach for using mobile 
phones to screen neonatal jaundice. Furthermore, our 
methods are evaluated in a clinical setting and compared to 
the TSB and TcB measures of bilirubin. 

RELATED WORK 
With their growing ubiquity, on-board sensors, and 
computational power, smartphones are increasingly 

becoming a platform for medical and health applications. 
Prior work in this relatively new space inspired and 
motivated the design of BiliCam. We divide our related 
work into two categories: smartphone-based health sensing 
and visual- or camera-based health sensing. 

Smartphone-Based Health Sensing 
A number of mobile health-sensing systems augment the 
phone’s capabilities with additional, custom hardware. A 
common example is exercise and physical activity 
monitoring systems that use sensors to track movement, 
such as the commercially available FitBit and Nike+. Work 
like UbiFit leverages such hardware to provide additional 
feedback and exercise incentives through a phone’s 
background display [13]. In addition to physical activity, 
smartphones can measure other physiological signs like 
heart rate. Poh et al. demonstrated a means of monitoring 
heart rate through a PPG attached to earbuds while playing 
music [30]. Wello, an upcoming specialized phone case 
embedded with sensors, promises to let people measure 
heart rate, temperature, blood pressure, pulse oximetry, and 
lung function from their phone. The space stretches beyond 
monitoring everyday health — phones are also becoming 
diagnostic tools. For instance, Franko et al. built a method 
of screening for scoliosis using a smartphone and a custom 
plastic accessory [16]. Smartphones are also beginning to 
emulate standard medical tools and making them more 
accessible. For example, Mobisanté develops commercially 
available hardware that plugs into a phone to generate basic 
ultrasound images, making a more portable and affordable 
alternative to traditional ultrasound equipment. 

A number of phone-based medical devices, like BiliCam, 
do not require external hardware and are purely software-
based solutions on the existing platform. For instance, there 
are pulmonary-focused systems that harness the built-in 
microphone. Our previous work uses the it to measure lung 
function (spirometry) in order to detect and monitor chronic 
lung conditions, and has achieved results akin to a clinical 
spirometer [18]. Another project monitors audio signals to 
track the frequency and quality of coughs, helping patients 
monitor coughing episodes and objectively report their 
coughing frequency to their doctors [19]. Similarly, Chen et 
al. used the microphone to continually monitor nasal 
conditions, such as sneezing and runny nose [12].  

Vision- or Camera-Based Health Sensing 
Like BiliCam, a number of recent explorations of health 
applications are vision based. The most similar work comes 
from a medical group in Thailand who investigated the 
feasibility of screening newborn jaundice with a camera-
based system similar to BiliCam. They found a correlation 
between color values from images of newborns, taken with 
a digital camera, and corresponding bilirubin levels. To do 
so, they manually inspected and adjusted each image in 
Photoshop [20]. Overall, the use of cameras for health 
sensing is becoming increasingly popular. For instance, 



some systems use a phone’s camera to measure heart rate 
anywhere and anytime by tracking a person’s finger for 
subtle flushes in the skin from blood flow [21,22]. 
Researchers have also investigated assisting rehabilitative 
physical therapy using a depth camera [11] or with infra-red 
cameras in a touch-screen table [7]. Smartphones have been 
shown to improve and automate point-of-care diagnostics, 
which require visually analyzing test results from blood or 
urine samples on specialized materials [14,33]. Other 
camera-based systems directly evaluate physiological 
conditions. Pamplona et al. demonstrated a method to 
screen eyes for specific impairments using an instrumented 
smartphone camera [27]. Also examining the eye using a 
phone camera, Bourouis et al. developed a method of 
detecting retinal cancer [8]. Other active areas of research 
with computer vision include recognizing skin cancer [37] 
and tracking chronic foot ulcers from diabetes [38].  

DATA COLLECTION 
To evaluate and inform the design of BiliCam, we 
conducted a clinical study at two sites in Seattle, the 
University of Washington Medical Center (UWMC) and 
the Roosevelt Pediatric Care Center, to create a dataset of 
image samples paired with ground-truth bilirubin levels 
from TSB tests. We collected images within two hours of 
the TSB blood draw to ensure that bilirubin measures were 
as accurate as possible. 

Enrollment 
Parents of newborns born at the UWMC gave informed 
consent to participate in the study within 24 hours after 
delivery. Photo samples were taken within these first 24 
hours of life as a baseline and once more between 2.5 to 5.5 
days of life for a follow-up. We limited enrollment to 
English-speaking parents of newborns who were born at 

more than 35 weeks of gestation (i.e., full term newborns). 
Of the 134 newborn participants who opted into the study, a 
total of 100 completed the study. Participants who required 
phototherapy prior to the follow-up became ineligible, due 
to the effect of phototherapy on skin color, which is a 
known issue for the TcB [34]. We also noted which blood 
samples were effected by hemolysis, a condition that affects 
the accuracy of TSB readings [10].  

Medical professionals collected all of the images on iPhone 
4S smartphones using a custom data collection app and the 
built-in camera. We chose to use an iPhone because it has 
the most standardized hardware of the current smartphone 
platforms available. The design of this study was informed 
by a pilot study we ran with 40 newborn participants. The 
pilot study data is not included in our evaluation of BiliCam 
due to significant differences in study procedure.  

Data Collection Timeline 
We structured the study to consist of two sets of image 
samples per newborn: a baseline and a follow-up. The 
baseline was taken at the UWMC within the first 24 hours 
of life, during which the newborn’s bilirubin is typically 
very low. The follow-up was taken at either study site when 
the newborn was 2.5 to 5.5 days old. Within two hours of 
the follow-up image, two medical bilirubin measurements 
were taken: a TSB blood sample and a TcB. The TSB 
provided ground-truth data and the TcB as a source of 
comparison. The TcB measures came from a Philips 
BiliCheck or Draeger Jaundice meter JM-103. We assigned 
a unique study ID to each participant to match the 
participant’s medical results and image data while 
maintaining confidentiality. 

After receiving the samples from the study phone, we 
segmented each image to extract the pixel values of the 
sternum, forehead, and color patches on the color 
calibration card. The sternum and forehead are the primary 
locations of interest for skin samples for several reasons. 
Medical practices standardize TcBs, which are also light-
based, to take readings from these two locations. Both the 
forehead and sternum also offer prominent, flat regions of 
skin on which we expect even lighting. We expect the 
whites of a newborn’s eyes to be more consistent across 
skin tones and potentially a better location of interest for a 
visual system. However, the eyes are closed (e.g. while 
sleeping or crying) the majority of the time. Even when 
open, the whites are hard to discern, given their small size 
compared to the iris.  

Data Collection Application 
Figure 3 shows a screenshot of our custom iPhone 
application that medical professionals used for data 
collection. For each sample, the app records the study ID, 
time of birth, whether the sample is a baseline or follow-up, 
and one or more sets of photographs and videos. For taking 
photographs, it first instructs the placement of the color 
calibration card on the newborn (Figure 3B) and prompts 

Participant Demographics (N=100) 

Age at follow-up (hours) (mean, range)  86  (60 – 129) 
Bilirubin Levels (mg/dl) (mean, range) 9.9  (0.8 – 21.1) 

Hemolysis (n, %) 19  (19%) 
Reported Ethnicity (n, %) 

 American Indian/Alaska Native:    6  (6%) 
 African American/Black: 15  (15%) 
 Asian: 20  (20%) 
 Latino:   9  (9%) 

 Pacific Islander/Native Hawaiian:   3  (3%) 

 White: 79  (79%) 

 Other:   2  (2%) 

 Multiple Races 24  (24%) 
Table 1. Demographic information for participants. Note that 
participants may report multiple ethnicities.  



the user to make sure there is a clear view of the card, 
sternum, and forehead. The phone then provides a live view 
from the camera with an overlaid “view finder” to align 
with the calibration card (Figure 3C). These cues constrain 
the distance of the camera from the newborn and 
comfortably fit the card and newborn’s sternum within the 
image. Our data collection application then captures a set of 
images. In case BiliCam needs to account for brief changes 
in skin color, such as subtle flushes from blood flow, it 
includes a 10 second video sequence. The phone’s “flash” 
LED is on during the first 5 seconds and turns off for the 
last. The system also takes a high-resolution photograph in 
the middle of each 5-second segment, capturing one image 
“with flash” and one image “without flash.”  

The system first analyzes the captured images to check for 
sample quality. It detects problems with the images such as 
positioning issues, occlusions, or inconsistent lighting, by 
applying a threshold on the standard deviation of pixel 
values for each color patch on the card. It then displays the 
captured images and recommends retaking them if any 
problems arose. Upon submitting a completed sample, the 
system uploads the sample data to a server through the 
phone's Internet connection. It also stores a local copy on 
the phone as a backup. 

 

Figure 4: Design of the color calibration card used in our studies.  

We designed the color calibration card to take the form of a 
business card for easy manufacturing and its appropriate 
size on newborns. The card has eight square patches with 
the following colors: black, 50% grey, white, cyan, 

magenta, yellow, and two skin tones (see Figure 4). The 
cyan, magenta, and yellow were printed such that only the 
respective inks were used on each patch; the colors did not 
contaminate each other. The cards were printed by a Konica 
Minolta Bizhub PRO c6501 printer on Cougar 100lb 
uncoated paper. We used a new card for each sample to 
prevent spreading disease. When taking a sample, we 
affixed a small, skin-safe adhesive to the back of each card 
for stable placement just above the newborn’s navel without 
bending or occluding the card from the user’s fingers. 

ALGORITHM 
We hypothesize that the visual characteristics of a 
newborn’s skin can estimate his or her bilirubin levels. 
Considering that the collected images (and thereby any 
extracted features) could vary considerably with different 
lighting conditions, the images need to be color balanced 
before feature extraction. Our main goals, then, are (1) to 
color balance the images, (2) extract intensities of various 
reflected wavelengths and other chromatic and achromatic 
properties from the skin, and (3) estimate bilirubin levels 
using machine learning. We explain each stage in turn and 
show a method outline in Figure 6. As an overview:  

• color balancing is carried out using the calibration cards 
captured in each image  

• for each skin patch, we estimate the mean red, green, 
and blue values, and the gradients of colors in the patch 

• we employ various color transformations to approximate 
properties such as hue, gamma, and saturation 

• extracted properties are used as features in a stacked 
regression and classification algorithm, which results in 
a final estimate of the bilirubin value 

Color Balancing 
We derive our features from the observed skin color, which 
can vary in different lighting conditions. To mitigate some 
of the effects of different lighting, we compute normalized 
red, green, and blue values. We calculate these normalized 
values by dividing each color channel value by the sum of 
all three channel values. Normalization alone, however, is 
not sufficient to counter color variations of illumination 
sources (i.e. the differences in halogen, fluorescent, or 
incandescent bulbs that can cause images to seem more 
“yellow” or “warm”). Hence, we include our color 
calibration card in each image for further color balancing. 
In order to use it, the system first needs to identify the 
location of the card and each of its color patches.  

Image Segmentation 
Although full automation and segmentation is not the focus 
of this proof of concept for BiliCam, we developed an 
algorithm to segment the card which we used in automatic 
image quality feedback when collecting data. We 
segmented skin patches by hand to reduce confounds. 

The data collection UI constrained the card to a specific 
region on the image (Figure 3C). Hence, the algorithm can 

 
Figure 3. Screenshots of data collection application with (A) the 
view for entering basic sample information, (B) instructions prior to 
recording images, and (C) a live feed from the camera with a “view 
finder” to align the color calibration card. 

A.     B.         C. 



ignore the pixels outside of this region to reduce the search 
space. It then locates at least two color patches on the card 
and extrapolates the rest of the card from these patches.  

To identify the color patches, the algorithm applies 
thresholds to the image. The system takes advantage of the 
fact that the cyan, magenta, and yellow patches have very 
distinct hues and high saturation. Hence, it converts the 
image to the hue, saturation, and value (HSV) space and 
applies empirically determined thresholds on the hue and 
saturation channels. Performing a bit-wise ‘AND’ operation 
of the two thresholded images separates the patch from the 
rest of the image. Figure 5 shows an example of 
thresholding for a yellow patch in this manner. Because that 
the system is aware of the approximate size of each patch, it 
can differentiate the patch from further noise in the image. 
This is done by using edge detection and morphological 
operations; specifically, we use an opening operation and 
Canny edge detection. The algorithm then uses contour-
detection to identify the patch’s boundary from the detected 
edges and smooths them using the Douglas-Peuker 
algorithm [32].  

After the system finds two of the color patches, it calculates 
the orientation of the card. It then extrapolates the locations 
of the remaining patches from these found corners.  

 
Figure 5. Segmentation of the yellow patch from a color calibration 
card.  

White Balancing 
We experimented with a number of white balancing 
techniques and most effective one to be an algorithm used 
by many popular image-editing tools. It uses the observed 
red, green, and blue (RGB) values of the white color patch 
to adjust the RGB values of the skin. More precisely, given 
(R’, G’, B’), it computes the adjusted (R, G, B) by 

 
where (R’w, G’w, B’w) is the average observed color of the 
white patch on the color calibration card [36].  

Feature Extraction 
Elevated levels of bilirubin result in a yellow discoloration 
of the skin. In order to better detect this subtle 
discoloration, BiliCam transforms the original RGB values 
into the YCbCr and Lab color spaces. We calculate their 
mean values for each color channel, resulting in 9 features.  

In addition to color transformations, we also calculate the 
change in color across the image patch using a linear color 
gradient. The gradient is calculated by running a 3×3 Sobel 
gradient filter across each color channel, and then averaging 
the outputs inside the patch. This is performed in the R, G, 
and B color planes, resulting in 3 additional features. 

The data collection app for BiliCam captures 2 images in 
each test: “with-flash” and “without-flash,” as described 
earlier. We use mean color features from both images and 
the color gradient features from the “with-flash” images, 
resulting in a total of 9+9+3=21 features. These features are 
used to train a custom machine learning regression 
algorithm with leave-one-out cross validation. For each 
fold, the training set features are transformed to have unit 
variance and zero mean (scaling). We also use principle 
components analysis (PCA) to decrease redundancy (e.g. 
the redundancy between YCbCr and Lab color spaces) and 
reduce the dimensionality to six component features. It 
learns these transformations only from the training dataset. 

Machine Learning Regression 
The regression algorithm employs an ensemble of different 
regressions. Each regression is chosen to give a slightly 
different perspective of the feature data. First, the scaled or 
PCA transformed features are used in each regression to 
obtain separate estimates of the total bilirubin level. Then 
the outputs of each regression are combined based upon the 
agreement in the ensemble, resulting in a single value for 
the bilirubin level. Figure 6 shows a flowchart of our 
machine learning process.  

We use an ensemble of five different regression algorithms. 
Each regression is discussed in turn. Most regressions are 
carried out using the scikit-learn toolkit [29] in Python. In 
order to avoid overfitting, we use leave-one-out cross 
validation in all levels of learning. That is, no images from 
the training sets are used in the testing sets for any of the 
regressions.  

k-Nearest Neighbor 
The first regression algorithm is an encapsulated k-Nearest 
Neighbor regression (k = 7) [17]. Intuitively, this regression 
takes a more “local” estimate of the bilirubin level based 
upon training points that have similar feature values. In this 
regression, we have a database of known features and 
bilirubin values. When an unknown test vector is analyzed, 
the k-nearest neighbors are found around the test vector in 
the database of features. The features for finding the nearest  



 
Figure 6. Flowchart of our algorithm. 

neighbors are the first two components of the PCA 
transformation. We use the L1 norm to calculate the nearest 
neighbors. Feature points from the neighbors are used to 
train a linear support vector regression. A new regression is 
built each time a new test point is analyzed.  

LARS 
The second set of regressions uses least angle regression 
(LARS) [15]. LARS regression uses a variant of forward 
feature selection to decide what features are most useful. 
Intuitively, this regression helps eliminate redundant 
features, while creating new features based on their 
correlation to the chosen features. Essentially, the best 
predictor from the feature set is chosen by developing a 
single-feature, linear regression from each feature. The 
most correlated output is chosen as the “first” feature. This 
prediction is subtracted from the output to obtain the 
residuals. Then, the algorithm attempts to find another 
feature with roughly the same correlation to the residuals as 
the first feature to the output. It then finds the “equiangular” 
direction between the two estimates, and finds a third 
feature that maximizes correlation to the new residuals 
along the equiangular direction. Features are added in this 
way until the desired accuracy is met. To experiment with 
transformations, we train two LARS regressions: one with 
scaled features and another with PCA components. 

LARS-Lasso Elastic Net 
The third regression uses the elastic net algorithm [39]. 
Intuitively, this algorithm also eliminates features, but in a 
slightly different way than LARS. This regression is a 
combination of Lasso regression (highly related to LARS 
for forward feature selection) and ridge regression (which 
uses an L2 regularization). In this way, forward feature 
selection and the L1 and L2 norms are employed in the 
regression objective function. This makes it related to 
LARS and Lasso regression, but with certain “backoff” 

regularization so that it becomes more stable. The 
parameters are chosen based on a grid search of the training 
set (but never the test set). As with LARS, we train two 
regressions, one with scaled features and another with PCA 
components.  

SVR 
All the regressions up to this stage were linear regressions. 
In order to capture the possible non-linear relationship, we 
employ two support vector regressions [35]. The idea 
behind the support vector regression (SVR) is that a linear 
regression function can be found in a high dimensional 
feature space. Then, the input data can be mapped into the 
space using a potentially nonlinear function. We train two 
SVRs: the first uses a linear kernel and the second uses a 
nonlinear sigmoidal basis function.  

Random Forest 
The last algorithm uses random forest regression [9] with 
75 trees. A random forest is a collection of estimators. It 
uses many “classifying” decision trees on various sub-
samples of the dataset. The outputs of these trees are 
averaged to improve the predictive accuracy and control 
over-fitting. Each tree is created using a random sub-sample 
(with replacement). Intuitively, the random forest 
regression can learn nonlinear or complex relationships in 
the data, which may be different than the regressions 
discussed up to this point. The random forest uses scaled 
features only. 

Final Output 
There are a total of eight regressions trained from the five 
algorithms. The agreement between the ensemble for a 
given test value is assessed from the difference between the 
minimum and maximum values from the ensemble. If the 
difference is less than the empirically derived threshold of 
2.0 mg/dl, the ensemble “agrees” and the mean is chosen. If 
the difference is greater than 2.0 mg/dl, then the second 
highest bilirubin value (i.e., the 90th percentile) is chosen. 
This helps to bias the regression algorithm to selecting a 
large bilirubin value when the ensemble does not agree; 
when used as a screening tool, it is more acceptable to have 
a false positive than to “miss” a potentially high bilirubin. 

RESULTS 
We break down the results into two subsections. The first 
section, Predicting Bilirubin Levels, quantifies the 
performance of our machine learning regression. The 
second subsection, Predicting Newborn Risk, quantifies the 
effects of BiliCam as a screening tool. 

Predicting Bilirubin Levels 
The individual regression algorithms performed similarly in 
terms of correlation with the TSB (rank order correlations 
ranged from 0.82 to 0.85). However, a closer inspection 
reveals that the algorithms perform quite differently on 
individual samples. The linear methods, in particular, tend 



to underreport bilirubin levels when the values are above 
12 mg/dl despite their high correlations. The ensemble 
method includes non-linear methods and can improve the 
overall accuracy of the system. Therefore, we only focus on 
the performance of this ensemble for the rest of the paper. 

Explanation: Figure 7 shows a scatter plot of BiliCam 
estimates (circles), calculated through leave-one-out cross-
validation, compared to the TSB. It also shows a modified 
Bland-Altman plot [6], where residuals (BiliCam – TSB) 
are plotted against the TSB. For comparison, each plot also 
contains predictions from the TcB (squares). Results: Our 
predicted bilirubin levels correlate with the TSB by a rank 
order correlation of 0.85 (linear correlation of 0.84), with a 
mean error of 2.0 mg/dl. We also compared the results from 
the TcB with the TSB and found a rank order correlation of 
0.92 (linear correlation of 0.92) and a mean error of 1.5 
mg/dl. Note that all results from the TcB used one fewer 
data point because the TcB would not provide a reading for 

one participant. Implication: Under the constraints of our 
study, BiliCam is effective at estimating the bilirubin levels 
and compares favorably with the TcB.  

A Wilcoxon signed rank test and an F-test of the residual 
variances failed to show statistically significant differences 
between the BiliCam estimates, the TcB estimates, and the 
TSB estimate (p>0.05). An N-way ANOVA on the residual 
magnitude (|BiliCam-TSB|) also did not reveal statistically 
significant effects on the residual magnitude from race, age, 
and hemolysis (p<0.05).  

Note that all presented results thus far use only features 
from the follow-up sessions. They do not include features 
from the baseline images for each newborn. Including these 
features failed to show a statistically significant difference 
in means based on a two-tailed t-test (p=0.05). For 
comparison, including the baseline features yields a rank 
order correlation of 0.83 (linear correlation of 0.82) and a 
similar mean error of 2.2 mg/dl.  

We note that BiliCam has more outliers than TcB, the top 
five of which come from non-white participants. However, 
there are no consistent attributes (such as race, hemolysis, 
or observable image quality) for why all the outliers exist. 
We need more data to characterize the existence of outliers.  

Predicting Newborn Risk 
To evaluate how well BiliCam assesses a newborn’s risk 
from jaundice, we applied classifications from the Bhutani 
nomogram to the predicted bilirubin levels. The nomogram 
divides bilirubin samples into four risk zones: low, 
intermediate-low, intermediate-high, and high [4]. Our 
classifications are based on the predicted bilirubin levels 
and participant age at the time of sample, using risk zone 
boundaries defined by BiliTool™ [23,24]. 

Explanation: Figure 8 shows the results of plotting the 
bilirubin levels predicted by BiliCam against age over a 
Bhutani nomogram. Where the points fall with respect to 
the risk zone boundaries determines their classification. 
Colors and directed symbols encode incorrect 
classifications based on classifications from the 
corresponding TSB (see Figure 8’s legend). Gray circles 
denote correct risk zone classification. Result: 67% of the 
results exactly match the Bhutani classification from TSB, 
19% are false negatives, and 14% are false positives. Of 
these misclassifications, 76% were off by one zone (i.e. 
misclassified into an adjacent zone). For comparison, the 
TcB yields 68% exact matches, 22% false negatives, and 
9% false positives. 87% of the TcB’s misclassifications 
were off by one zone. A suggested method for screening 
with the TcB is to administer a TSB to catch high risk cases 
if TcB readings fall into the intermediate-high or high risk 
categories [25]. To compare the effectiveness of BiliCam as 
such a screening tool, we consider the high risk cases 
classified into this combined risk category. Of the 9 
samples that should classify as high risk, BiliCam classified 
2 false negatives (hence, missing 2/9 or 22% of the high  

 
Figure 7. (Top) A comparison between predicted bilirubin levels 
and TSB. Blue circles represent predictions from BiliCam, orange 
squares predictions from the TcB. (Bottom) A Bland-Altman plot 
showing residuals of predicted bilirubin levels against the TSB. 



risk cases) and 8 false positives. In comparison, the TcB 
classified 2 false negatives (missing 2/8 or 25%) and 5 false 
positives. Note that there is one fewer TcB measure because 
the device would not offer the corresponding reading.  

Implication: BiliCam demonstrated statistically equivalent 
performance as the TcB in its ability to catch high risk 
cases in our dataset. These results indicate that BiliCam 
could have a very similar utility to TcB as a screening tool, 
with the advantage of greater accessibility. 

DISCUSSION 
Our analyses of BiliCam compare favorably with the TSB 
and the TcB. BiliCam cannot replace TSB testing, but can 
be used like the TcB as an effective screening tool to 
determine whether TSB testing is necessary. The ubiquity, 
portability, and cost of smartphones also offer advantages 
that may make BiliCam more appropriate for screening in 
home environments where TcBs are not available. Despite 
these advantages, there are limitations that require more 
research before we can fully characterize BiliCam as an in-
home jaundice screening tool. 

Limitations 
Our current data collection was done solely on iPhone 4S 
devices. To be more accessible, BiliCam should function on 
multiple devices and platforms. Different brands and 
models employ different cameras, lenses, filters, and color 
corrections. All these factors can affect the collected data. 
We have yet to investigate the feasibility and necessary 
adjustments to make the system available on other devices. 
The color calibration cards are another unexplored variable. 
Every card we used in the study was printed at the same 
shop using the same printer and paper. The level of 
variation for ink, printers, and paper permissible for 
accurate results is yet to be tested.  

To be practical on a global scale, BiliCam results must also 
address diverse populations. Hence, data needs to be 
collected from a large variety of participants of different 
races. The diversity of our dataset is inherently limited as 
more than half of its participants are white. BiliCam would 
also benefit from more data to help characterize its outliers. 

To this end, we are currently planning several national and 
international clinical studies for BiliCam.  

Additionally, the quality of images has a major bearing on 
the output of BiliCam. We often captured multiple, back-to-
back sets of images per sample-taking session to 
compensate for varying degrees of image quality (i.e. in 
case of blur, occlusions, graininess, etc.). Randomly 
drawing from these images can drop the rank order 
correlation with TSB to as low as 0.80 in our dataset. 

Sample and Feature Selection 
Our final algorithm did not include the baseline photos 
because it failed to demonstrate a statistically significant 
difference; using features from both baselines and follow-
up samples is as equally decisive as using those from 
follow-up samples alone. Not needing these baselines is a 
major benefit — it means that BiliCam can predict newborn 
bilirubin levels from a single session. However, baselines 
are still a worthwhile option to explore as they may help to 
adjust for skin tone differences in more diverse populations.  

Although we segmented images for patches of skin on both 
the forehead and sternum, we ultimately focused solely on 
the sternum. There are several possible explanations for 
why the sternum yielded better results. We expect 
inconsistent lighting to be the primary reason. With the 
forehead being much further away than the sternum from 
the color calibration card, compounded by the head’s large 
range of motion, the skin on the forehead experienced 
different lighting conditions than the card and sternum. 
Additionally, the sternum is a preferable location for other 
reasons: sunlight can mildly reduce bilirubin concentration 
in the skin and the sternum tends to experience less light 
exposure than the forehead. Studies suggest the same effect 
for TcB readings, which are also optically based, and 
explicitly recommend taking TcB measurements from the 
sternum over the forehead [31].  

Given the quality of our initial results from using just the 
still images, we focused on those and have not investigated 
the videos in our dataset. Still images are also preferable 
from a logistical point of view: they can be uploaded and 

 
Figure 8. Risk zone classification of BiliCam using Bhutani nomogram. Colored lines map incorrectly classified points to the ground truth 
classification and bilirubin level.  



processed by a server in a matter of seconds, enabling 
BiliCam to offer instant results. Videos are also difficult to 
take and more susceptible to image quality issues, which we 
discuss further in our future work. 

Foreseeable Impact  
Neonatal jaundice poses a greater challenge in resource-
poor areas of the world where the necessary medical tests 
are unavailable. In some countries, kernicterus is the second 
or third leading cause of newborn death, as well as an 
important contributor to long-term disabilities [34]. 
Because of the seriousness of these complications, the 
social return on investment for this technology in resource 
poor areas is considerably elevated. 

Depending on the context, we expect parents, clinicians, or 
community health workers to use BiliCam. For newborns 
delivered in hospitals, families could receive a card, with 
the color calibration target printed on one side and 
instructions to download the system on the other side, 
before discharge from the hospital. Parents would then use 
BiliCam to screen their newborns in the comfort of their 
own homes, potentially saving inaccuracies, anxiety, 
unnecessary clinic visits, and blood draws when compared 
to the current method of visual assessment. Moreover, 
BiliCam offers them a method of continuous screening and 
earlier identification of newborns in need of treatment. At 
the initial outpatient visits for newborns, clinicians could 
use BiliCam to assess the severity of jaundice and 
determine if testing with TSB is warranted or unnecessary. 
In areas where visiting nurses are common, they could 
bring a smartphone and color calibration cards as they visit 
families to more objectively assess neonatal jaundice than 
their current, visual method. Many low-resource areas 
employ community health workers (CHWs), who travel 
from one village to another to provide limited health care. 
Having them carry and use this screening tool could help 
reduce the frequency of kernicterus and its consequences 
where it is most prevalent. 

Future Work 
Future work will focus primarily on further data collection 
to reduce the system’s limitations. In addition to acquiring 
more data points and increasing the diversity of our 
samples, we would also like to introduce the following 
improvements for future clinical studies.  

Redesigning the color calibration card could facilitate 
smoother data collection. A hole in the center of the card 
can frame the skin patch of interest. It would force the skin 
and card to lie immediately next to and flush with each 
other for more consistent lighting, whereas our current 
system lets the angle of the skin and card vary freely. 
Constraining the skin to lie within this hole would also 
make automating the segmentation process much more 
straightforward. Currently, a number of complications like 
unexpected shadows, occlusions, and body positions make 
automated skin segmentation non-trivial to the point where 

we prefer to segment them by hand. The card could 
additionally benefit from having a peel-off back that 
exposes a gentle, skin-safe adhesive.  

The data collectors expressed difficulties in taking images 
of the newborns that we would like to alleviate in future 
data collection. Positioning and holding the phone at the 
right distance, watching the newborn, aiming for the card, 
and reacting to the newborn’s movements for a 10 second 
video can be surprisingly overwhelming, particularly if the 
newborn is crying. Given how promising our results are 
using still photographs, one improvement could be to take a 
series of clearly punctuated still images instead of a video. 
We expect that taking these images is significantly easier as 
it does not require continual tracking.  

The image quality feedback mechanism also has room for 
improvement. The current system only lists possible 
reasons that an image can fail the quality test, so the reason 
for a particular failure is not obvious. A future system could 
automatically determine and report the source of image 
quality issues (e.g. highlight instances of glare or shadows). 
It can also improve by checking images in real time, to alert 
the photographer to potential issues before and throughout 
the sample collection process, or automatically recognize 
and capture images with passing quality. 

Further into the future, BiliCam could benefit from having 
both server-connected and stand-alone versions. There are 
interesting trade-offs between running BiliCam’s algorithm 
directly on the phone versus on a server. Computation on 
the server can retain tighter control of how the system runs 
the algorithm, based on a growing central database of 
clinical samples to train on or algorithmic breakthroughs. It 
can also guarantee that BiliCam uses the most up-to-date 
algorithm. However, computing entirely on the phone 
offers the ability to use BiliCam without any Internet 
connection. A stand-alone version may be the way to 
disseminate this medical system in low resource settings 
with incomplete or inadequate cell coverage. We believe a 
server-connected version is otherwise preferred. 

CONCLUSION 
In conclusion, we presented BiliCam, a non-invasive 
smartphone-based system to monitor newborn jaundice 
using the built-in camera. Our initial evaluations imply that 
although BiliCam cannot yet replace it, BiliCam could 
become an effective screening tool comparable to a TcB. 
Unlike current screening techniques, it also offers distinct 
cost and accessibility advantages that make it appropriate 
for screening newborns in the comforts of their own homes. 

ACKNOWLEDGEMENTS 
We heartily thank our data collectors: Barbara Baker, Susan 
Sargent, and Tatiana Gellein. This research was funded in 
part by Coulter Foundation and an NSF Graduate Research 
Fellowship.  



REFERENCES 
1. Agu, E., Pedersen, P., Strong, D., et al. The smartphone 

as a medical device: Assessing enablers, benefits and 
challenges. IEEE International Workshop of Internet-of-
Things Networking and Control (IoT-NC), (2013), 76–
80. 

2. Akman, I., Arika, Ç., Bilgen, H., KalaCa, S., and Özek, 
E. Transcutaneous Measurement of Bilirubin by 
Icterometer During Phototherapy on a Bilibed. Turkish 
Journal of Medical Sciences 32, June 2000 (2002), 165–
168. 

3. Baker, C., Fontela, G., Jones, P., Lynch, B., Sypher, S., 
and Patil, C. BME 272 NCIIA Project Proposal 
Neonatal Jaundice. 2012.  

4. Bhutani, V., Johnson, L., and Sivieri, E. Predictive 
ability of a predischarge hour-specific serum bilirubin 
for subsequent significant hyperbilirubinemia in healthy 
term and near-term newborns. Pediatrics 103, 1 (1999). 

5. Bhutani, V.K., Stark, A.R., Lazzeroni, L.C., et al. 
Predischarge Screening for Severe Neonatal 
Hyperbilirubinemia Identifies Infants Who Need 
Phototherapy. The Journal of pediatrics 162, 3 (2013), 
477–482.e1. 

6. Bland, J.M. and Altman, D.G. Statistical Methods for 
Assessing Agreement Between Two Methods of 
Clinical Measurement. The Lancet, (1986), 307–310. 

7. Boulanger, C., Boulanger, A., de Greef, L., et al. Stroke 
rehabilitation with a sensing surface. ACM CHI 
Conference on Human Factors in Computing Systems, 
(2013). 

8. Bourouis, a., Feham, M., Hossain, M. a., and Zhang, L. 
An intelligent mobile based decision support system for 
retinal disease diagnosis. Decision Support Systems 59, 
(2014), 341–350. 

9. Breiman, L.E.O. Random Forests. Machine Learning 
45, 1 (2001), 5–32. 

10. Brunori, P., Masi, P., Faggiani, L., et al. Evaluation of 
bilirubin concentration in hemolysed samples, is it 
really impossible? The altitude-curve cartography 
approach to interfered assays. Clinica chimica acta; 
international journal of clinical chemistry 412, 9-10 
(2011), 774–7. 

11. Chang, Y.-J., Chen, S.-F., and Huang, J.-D. A Kinect-
based system for physical rehabilitation: a pilot study 
for young adults with motor disabilities. Research in 
developmental disabilities 32, 6 (2011), 2566–70. 

12. Chen, N., Wang, K.-C., and Chu, H.-H. Listen-to-Nose  : 
A low-cost system to record nasal symp- toms in daily 
life. 14th ACM International Conference on Ubiquitous 
Computing (UbiComp), (2012). 

13. Consolvo, S., Klasnja, P., Mcdonald, D.W., et al. 
Flowers or a Robot Army  ? Encouraging Awareness & 
Activity with Personal, Mobile Displays. 10th 
International Conference on Ubiquitous Computing 
(UbiComp), (2008). 

14. Dell, N. and Borriello, G. Mobile Tools for Point-of-
Care Diagnostics in the Developing World Categories 
and Subject Descriptors. ACM Annual Symposium on 
Computing for Development (DEV), (2013). 

15. Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. 
Least Angle Regression. The Annals of Statistics 32, 2 
(2004), 407–499. 

16. Franko, O.I., Bray, C., and Newton, P.O. Validation of a 
scoliometer smartphone app to assess scoliosis. Journal 
of pediatric orthopedics 32, 8 (2012), e72–5. 

17. Gupta, M.R., Garcia, E.K., and Chin, E. Adaptive local 
linear regression with application to printer color 
management. IEEE Transactions on Image Processing, 
(2008), 936–945. 

18. Larson, E., Goel, M., Boriello, G., Heltshe, S., 
Rosenfeld, M., and Patel, S. SpiroSmart: Using a 
Microphone to Measure Lung Function on a Mobile 
Phone. ACM UbiComp, (2012). 

19. Larson, E.C., Lee, T., Liu, S., Rosenfeld, M., and Patel, 
S.N. Accurate and privacy preserving cough sensing 
using a low-cost microphone. 13th International 
Conference on Ubiquitous Computing (UbiComp), 
ACM Press (2011), 375. 

20. Leartveravat, S. Transcutaneous bilirubin measurement 
in full term neonate by digital camera. Medical Journal 
of Srisaket Surin Buriram Hospitals 24, 1 (2009). 

21. Lee, J., Reyes, B. a, McManus, D.D., Mathias, O., and 
Chon, K.H. Atrial fibrillation detection using a smart 
phone. Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society 2012, 
(2012), 1177–80. 

22. Lee, J., Reyes, B. a, McManus, D.D., Mathias, O., and 
Chon, K.H. Atrial fibrillation detection using an iPhone 
4S. IEEE Transactions on Bio-Medical Engineering 60, 
1 (2013), 203–6. 

23. Longhurst, C., Turner, S., and Burgos, A.E. 
Development of a Web-based decision support tool to 
increase use of neonatal hyperbilirubinemia guidelines. 
Joint Commission journal on quality and patient safety / 
Joint Commission Resources 35, 5 (2009), 256–62. 

24. Longhurst, C., Turner, S., and Burgos, A.E. BiliToolTM. 
2014. http://bilitool.org/. 

25. Maisels, M.J., Bhutani, V.K., Bogen, D., Newman, 
T.B., Stark, A.R., and Watchko, J.F. Hyperbilirubinemia 
in the newborn infant > or =35 weeks’ gestation: an 



update with clarifications. Pediatrics 124, 4 (2009), 
1193–8. 

26. National Collaborating Centre for Women’s and 
Children's Health and National Institute for Health and 
Clinical Excellence. Neonatal Jaundice Clinical 
Guideline. London, 2010. 

27. Pamplona, V.F., Mohan, A., Oliveira, M.M., and 
Raskar, R. NETRA  : Interactive Display for Estimating 
Refractive Errors and Focal Range. ACM Transactions 
on Graphics (SIGGRAPH), (2010). 

28. Patel, P. ClikJaundice: Using mobile technology to 
detect yellow in newborns. 2013. 
http://thealternative.in/social-business/clickjaundice-
using-the-phone-to-prevent-jaundice-in-newborns/. 

29. Pedregosa, F., Weiss, R., and Brucher, M. Scikit-learn  : 
Machine Learning in Python. Journal of Machine 
Learning Research (JMLR) 12, (2011), 2825–2830. 

30. Poh, M.-Z., Kim, K., Goessling, A.D., Swenson, N.C., 
and Picard, R.W. Heartphones: Sensor Earphones and 
Mobile Application for Non-obtrusive Health 
Monitoring. 2009 International Symposium on 
Wearable Computers, (2009), 153–154. 

31. Poland, R.L., Hartenberger, C., McHenry, H., and Hsi, 
A. Comparison of skin sites for estimating serum total 
bilirubin in in-patients and out-patients: chest is superior 
to brow. Journal of perinatology  : official journal of the 
California Perinatal Association 24, 9 (2004), 541–3. 

32. Ramer, U. An Iterative Procedure for the Polygonal 
Approximation of Plane Curves. Computer Graphics 
and Image Processing 1, 3 (1972), 244–256. 

33. Shen, L., Hagen, J. a, and Papautsky, I. Point-of-care 
colorimetric detection with a smartphone. Lab on a chip 
12, 21 (2012), 4240–3. 

34. Slusher, T.M., Zipursky, A., and Bhutani, V.K. A global 
need for affordable neonatal jaundice technologies. 
Seminars in perinatology 35, 3 (2011), 185–91. 

35. Smola, A.J. and Schölkopf, B. A tutorial on support 
vector regression. Statistics and computing 14, 3 (2004), 
199–222. 

36. Viggiano, J.A.S. Comparison of the accuracy of 
different white balancing options as quantified by their 
color constancy. Sensors and Camera Systems for 
Scientific, Industrial, and Digital Photography 
ApplicationsV: Proceedings of the SPIE 5301, (2004). 

37. Wadhawan, T., Situ, N., Rui, H., Lancaster, K., Yuan, 
X., and Zouridakis, G. Implementation of the 7-point 
checklist for melanoma detection on smart handheld 
devices. Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society. (2011), 
3180–3. 

38. Wang, L., Pedersen, P.C., Strong, D., Tulu, B., and 
Agu, E. Wound image analysis system for diabetics. 
International Society for Optics and Photonics (SPIE), 
(2013), 866924. 

39. Zou, H. and Hastie, T. Regularization and variable 
selection via the elastic net. Journal of the Royal 
Statistical Society: Series B (Statistical Methodology) 
67, 2 (2005), 301–320. 

40. Management of Hyperbilirubinemia in the Newborn 
Infant 35 or More Weeks of Gestation. Pediatrics 114, 1 
(2004), 297–316.  

 


